
OpenCatEsp32
Code Walkthrough

for the
Bittle with BiBoard (ESP32 CPU)

v1.06
by este este

(https://github.com/este-este)

Source code from https://github.com/PetoiCamp/OpenCatEsp32
original walkthrough based on repo commit "fdae2e19" 2024-03-14

updates based on repo commit "1a008994" 2024-05-17

1

https://github.com/PetoiCamp/OpenCatEsp32

This document is based on source code as it appeared in the specific
GitHub repo commit(s) indicated on the title page. As such, it may not
apply to future iterations of the code1.
It was prepared for my own edification but is shared in the hopes that
it may also benefit others who enjoy this Bittle robot.
I am not affiliated with Petoi LLC, but I am an enthusiastic fan and
supporter of their work. All opinions, observations and assertions
herein are my own. Any mistakes are also my own, for which I
apologize in advance. Special thanks go to the Petoi team for
insightful software discussions along this "path" to understanding!
Best regards,
este este

2Disclaimer

1. At minimum, the line numbers shown here may be different!

• Background Information
• My Setup
• My Observations
• Code Walkthrough Plan
• Code Walkthrough

• "Sketch" Process Map
• OpenCatEsp32.ino (Part 1)
• OpenCat.h
• OpenCatEsp32.ino (Part 2)
• io.h
• reaction.h (Part 1)
• taskQueue.h
• moduleManager.h

• reaction.h (Part 2)
• skill.h

3Outline

• C++ compiler:
• The compiler produces a binary form of the source code that can be

understood by the CPU.

• C++ preprocessor:
• The preprocessor acts before the compiler to transform the source code

into a form that the compiler can process.
• The preprocessor looks for directives which are statements, starting with

"#", that do the following:
• An inclusion directive (#include) references a C++ header (.h) file and causes the

preprocessor to replace that directive with the contents of that header file.
• A macro directive (#define) names a code block and causes the preprocessor to

replace that name with the contents of that macro wherever the macro is used.
• A conditional directive (e.g. #if, #if defined, #ifdef) allows a code block, including

subordinate directives, to be processed & compiled only under specific conditions.
• Any code or directive that is always processed is considered "unconditional".

4Background Information: Directives

See https://gcc.gnu.org/onlinedocs/cpp/ for more info about C++ preprocessors.

https://gcc.gnu.org/onlinedocs/cpp/

• Inclusion directive usage is simple.
• They introduce code held elsewhere in a header file.
• Example: "#include "src/OpenCat.h"

• Macro directive usage is more complex.
• Can indicate the presence of an attribute.

• Example: "#define BITTLE"
• This type is used by conditional directives.

OR
• Can define a constant (could be a simple type or could be code).

• Example: "#define WALKING_DOF 8"
• This type is used in logic, calculations, and information display.

• Conditional directive usage is the most complex.
• They sort of "write" code, based on macro directives.

• Example: #if defined BITTLE
 < Bittle specific code that only complies if the BITTLE macro is defined >
 #endif

• This type makes the code super flexible but, inherently, harder to read and understand!

5Background Information: Directives (cont.)

Conditional directives are
a type of "guard" clause. They

enable or disable specific
code compilation based on

certain conditions.

• Skills: A Posture, Gait or Behavior that the robot can perform.
• Posture: a stationary robot pose where each servo is in a specific position

 (angle) that comprises the pose.
• Gait: a locomotion where the robot moves through a sequence of poses.
• Behavior: an action where the robot moves through a sequence of poses.

• Frame: A collection the joint angles for a specific pose.
• Gaits and Behaviors use a set of Frames to compose robot motion,

like video consists of a series of images.
• Gaits loop through all Frames continuously.
• Behaviors loop only through a subset of Frames and only for a specified number of

times.
• Behaviors therefore require more info than Postures or Gaits.

• Skills are represented in code1 as integer (int8_t) arrays2

• The array data is divided into Skill Info and Frame Info.

6Background Information: Skills

1. See https://docs.petoi.com/applications/skill-creation#understand-the-code.
2. Found in an Instinct header file (e.g. InstinctBittleESP.h)

https://docs.petoi.com/applications/skill-creation#understand-the-code

• Skill Info Elements
• All Skills have Total # of Frames, Expected Body Roll & Pitch and Angle Ratio as

the first 4 elements (in red below)
• Behaviors have 3 extra Skill Info elements AND their first element has a minus sign (-)

• Behavior Skill Info = Start Frame # & End Frame # plus # of Loops (in blue below)

• Frame Info Elements
• Postures and Behaviors have 16 Indexed Joint Angle elements (in green below)

• Behaviors have 4 extra Frame Info elements
• Behavior Frame Info = Speed Factor, Delay Time, Trigger Axis, and Trigger Angle (in purple below)

• Gaits use only the upper 8 Indexed Joint Angle elements (in yellow below)

7Background Information: Skill Array Data Structure

Angle
Ratio

Roll Pitch

Loop
Start

Frame
#

Loop
End

Frame
#

#
Of

Loops
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed
Factor

Delay
Time

Trigger
Axis

Trigger
Angle

Posture "sit" Array Data Structure ➔ 1 0 -30 1 0 0 -45 0 -5 -5 20 20 45 45 105 105 45 45 -45 -45
Gait "crF" Array Data Structure ➔ 67 0 2 1 42 73 83 75 -43 -42 -49 -41

Behavior "pu" Array Data Structure ➔ -10 0 0 1 7 8 3 0 0 0 0 0 0 0 0 30 30 30 30 30 30 30 30 8 0 0 0

Expected
Body

OrientationTotal #
of

Frames

Indexed Joint Angles
Behavior
Skill Info

Skill Info Frame Info

Behavior
Frame Info

• Expected Body Roll & Pitch
• Used by the Gyro to adjust leg servos

to keep the body tilt near the
expected values.

• Angle Ratio
• A multiplier for the joint servo angles

• Necessary because Frame joint servo angles must be int values in the range -125 to 125

8Background Information: Skill Array Data Structure (cont.)

Angle
Ratio

Roll Pitch

Loop
Start

Frame
#

Loop
End

Frame
#

#
Of

Loops
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed
Factor

Delay
Time

Trigger
Axis

Trigger
Angle

Posture "sit" Array Data Structure ➔ 1 0 -30 1 0 0 -45 0 -5 -5 20 20 45 45 105 105 45 45 -45 -45
Gait "crF" Array Data Structure ➔ 67 0 2 1 42 73 83 75 -43 -42 -49 -41

Behavior "pu" Array Data Structure ➔ -10 0 0 1 7 8 3 0 0 0 0 0 0 0 0 30 30 30 30 30 30 30 30 8 0 0 0

Expected
Body

OrientationTotal #
of

Frames

Indexed Joint Angles
Behavior
Skill Info

Skill Info Frame Info

Behavior
Frame Info

• Speed Factor (in deg per step; default = 4)
• How fast the servos will move (slow to fast = 1 to 125).

• Delay Time (in 50 millisecond increments; default = 0)
• How long to wait before the next frame (none to long = 0 to 125).

• Trigger Axis
• Sets body rotation direction when to trigger the next frame

• 0 = no trigger axis
• 1 = positive pitch, -1 = negative pitch
• 2 = positive roll, -2 = negative roll

• Trigger Angle
• Angle that must be achieved to trigger the next frame

(Range = -125 to 125)

9Background Information: Skill Array Data Structure (cont.)

Angle
Ratio

Roll Pitch

Loop
Start

Frame
#

Loop
End

Frame
#

#
Of

Loops
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed
Factor

Delay
Time

Trigger
Axis

Trigger
Angle

Posture "sit" Array Data Structure ➔ 1 0 -30 1 0 0 -45 0 -5 -5 20 20 45 45 105 105 45 45 -45 -45
Gait "crF" Array Data Structure ➔ 67 0 2 1 42 73 83 75 -43 -42 -49 -41

Behavior "pu" Array Data Structure ➔ -10 0 0 1 7 8 3 0 0 0 0 0 0 0 0 30 30 30 30 30 30 30 30 8 0 0 0

Expected
Body

OrientationTotal #
of

Frames

Indexed Joint Angles
Behavior
Skill Info

Skill Info Frame Info

Behavior
Frame Info

Angle
Ratio

Roll Pitch

Loop
Start

Frame
#

Loop
End

Frame
#

#
Of

Loops
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed
Factor

Delay
Time

Trigger
Axis

Trigger
Angle

Posture "sit" Array Data Structure ➔ 1 0 -30 1 0 0 -45 0 -5 -5 20 20 45 45 105 105 45 45 -45 -45
Gait "crF" Array Data Structure ➔ 67 0 2 1 42 73 83 75 -43 -42 -49 -41

Behavior "pu" Array Data Structure ➔ -10 0 0 1 7 8 3 0 0 0 0 0 0 0 0 30 30 30 30 30 30 30 30 8 0 0 0

Expected
Body

OrientationTotal #
of

Frames

Indexed Joint Angles
Behavior
Skill Info

Skill Info Frame Info

Behavior
Frame Info

• Posture "sit"

• Gait "crF"

• Behavior "pu"

10Background Information: Skill Code Examples

For these Gait and
Behavior examples,
only first 2 and last 2
Frames are shown.

⚫

⚫

⚫

⚫

⚫

⚫

11Background Information: Skills1 in InstinctBittleESP.h

• Postures • Gaits • Behaviors

1. See this link about tokens and skills in https://docs.petoi.com/apis/serial-protocol

Skill Description

balance stand up neutral
buttUp butt up

calib calibration pose
dropped dropped by back legs

lifted lifted by neck
lnd landing pose
rest rest
sit sit
str stretch
up stand up neutral (= balance)

zero set all joints to 0 degrees

Skill Description

bdF bound Forward
bk backward
bkL backward Left
crF crawl Forward
crL crawl Left
gpF gap Forward
gpL gap Left
hlw halloween gait
jpF jump Forward

• 62 Skills currently (11 Postures, 19 Gaits, 32 Behaviors)
• Mirrorable skills must end in 'L' (two skills with one definition - saves memory!)

Skill Description

ang angry
bf backflip
bx boxing

chr cheers
ck check

cmh come here
dg dig
ff front flip
fiv high five

gdb good boy
hds handstand
hg hug
hi hi

hsk handshake
hu hands up

jmp jump

Skill Description

kc kick
lpov leap over
mw moon walk
nd nod
pd play dead

pee pee
pu push ups

pu1 push ups with one hand
rc recover (returns to standing)
rl roll

scrh scratch
snf sniff
tbl be a table
ts test

wh wave head
zz all joints to 0 degrees

Gaits in red highlight are defined for leftward
locomotion. They can be mirrored to
rightward locomotion by changing the skill
last character 'L' to 'R'.

Changing the skill last character 'L' to 'X' will
cause random selection of the corresponding
leftward or rightward locomotion.

Skill Description

lftF low foot Forward

lftL low foot Left

phF push Forward
phL push Left
trF trot Forward
trL trot Left
vtF step at origin
vtL spin Left
wkF walk Forward
wkL walk Left

https://docs.petoi.com/apis/serial-protocol

• I use Visual Studio 2019 with Visual Micro
(https://www.visualmicro.com/) as my IDE (Integrated Development
Environment).
• This is just my preference. The code is designed for the Arduino IDE and runs

just fine there.

• All code is displayed as screenshots from Visual Studio 2019.
• The VS2019 code formatting (at about 110% magnification) and line

numbers facilitate the walkthrough1.

12My Setup

1. Though not so useful when updates to preceding code changes those line numbers...

https://www.visualmicro.com/

• The source code's purpose is to...
• provide mechanisms for the robot to perceive itself and its surroundings

• Inward perception is achieved via...
• inputs from the IMU (Inertial Measurement Unit) module to "know" its body orientation,

and/or
inputs via servo feedback (future servos may have that capability) to "know" its joint positions.

• Outward perception is achieved via...
• inputs from sensors and from communication channels,

• that arise from passive or active interactions1.

AND THEN
• respond to those perceptions.

• Responses are outputs involving changes in movement, sound and light.

13My Observations

1. Passive vs. active refers to robot interactions with stationary vs moving/animate objects in the environment. The
term is from the robot's perspective.

• Commands connect perceptions to responses.
• For communication channel1 inputs, the perceptions "are" the commands

• Used for machine-robot2 interaction.
• For all other inputs, the perceptions are interpreted into commands.

• Used for passive and active sensor interactions.

• A command3 uses...
• single character tokens that categorizes and initiates the desired command
plus
• token parameters that provide information the command requires.

• Parameters for capital letter tokens immediately follow their token (no space separator).
• Parameters for most lower-case tokens, except 'k', can have a space separator following their token.

14My Observations (cont.)

1. USB & Bluetooth serial communication.
2. IMO, use of communication channel inputs is always machine-robot interaction where "machine" is e.g. your

laptop or cell phone. True human-robot interaction is via sensors (e.g. the touch sensor).
3. The source code stores the token parameters in the "newCmd" variable. It can hold the skill name (for token 'k') and

skill data (initially, in serial buffer format, then reformatted to skill array format to save memory).

• The source code has important functions to support its' purpose.
• readEnvironment()

• Currently used for inward perception.
• E.g. robot senses it has flipped over.

• Could be expanded for passive or active outward perceptions.
• E.g. robot senses an object (stationary or moving/animate) that it is about to walk into.

• readSignal()
• Currently used for active outward perception.

• E.g. robot receives a command on a communication channel.
• E.g. robot receives touch, voice or IR sensor data from a moving/animate object (such as a

person tapping a touch sensor, speaking to a voice sensor or pressing buttons on an IR
remote).

• reaction()
• Provides a response to perceptions from the above "read" functions.

• If the perception is via a communication channel, the code processes the command that
was input.

• If the perception is via sensors, the input(s) must be interpreted into command(s) before
processing.

15My Observations (cont.)

• In this source code, the C++ preprocessor conditional directives,
when nested, are unfortunately not indented.
• This lack of indentation makes following the logic of such nested blocks

more difficult.
• Note: The "fold" capability of VS2019 helps somewhat to determine the start and

end of nested blocks, so this walkthrough will attempt to cover such nested blocks
in segments.

• There are historical reasons for this lack of indentation (see, for example,
https://stackoverflow.com/questions/789073/indenting-defines) but
those no longer apply to current C++ preprocessors.
• I know of no way to automatically indent such nested blocks so if some energetic

person wants to do that formatting, it would be greatly appreciated!

16My Observations (cont.)

https://stackoverflow.com/questions/789073/indenting-defines

• In code walkthrough slides:
• Notes will be given at the top of the slide and interspersed with the code

lines that are below.
• The code walkthrough will be kept at a higher level

• Lower-level code and less important lines will sometimes be omitted for brevity.

• The focus will be on the Bittle robot model using the BiBoard
(ESP32 CPU).

• We will take a top-down, "sketch process", approach
• This means we will the follow the thread of the code controlled by the

sketch "OpenCat32.ino", from file to file and function to function as
needed.

• A visual high-level "Sketch Process Map" will be used.

17Code Walkthrough Plan

Code Walkthrough Begins!

18

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h1 skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

19

Process
Flow

1. sense.h was replaced by moduleManager.h on 2024-04-19

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h1 skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

20

Starting Here!

Process
Flow

1. sense.h was replaced by moduleManager.h on 2024-04-19

OpenCatEsp32.ino: Model, Board & Software "Defines"1

• The enabled #define macro directives (in purple colored font below)...
• set the model [BITTLE], board [BiBoard version] and software options.

• Important note: If you have the BiBoard v0_1, disable "#define BiBoard_V0_2" and enable
"#define BiBoard_V0_1".

21

These are now enabled by default since
access is now controlled in
moduleManager.h, via the 'X' token at
runtime, rather than via these macro
directives at compile time.

1. updated based on repo commit "1a008994" 2024-05-17

OpenCatEsp32.ino: Master include & setup() function
• The #include directive takes in the OpenCat.h header file.

• This file is the master header file.
• It has many conditional directives which control the defining of many macro directives and can also trigger

many inclusion directives.
• We will begin looking at the OpenCat.h header file after this slide.

• The setup() function...
• is the Arduino function that is run once, to set up the software.
• initializes the serial port and then clears the serial buffer.
• calls the initRobot(), which we will see in the OpenCat.h header file.

22

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

23

Next Up!

OpenCat.h: General Observations
24

• It is unique among OpenCat specific header files!
• It is the first header file that is included.
• As such, it provides the most initializations1

• The largest number of macro directives in a single file (mostly in lines 65 thru 275).
• The majority of global variable definitions (mostly in lines 278 thru 326).
• The largest number of conditional directives (mostly in lines 328 thru 505).

• It includes initRobot() function which does the robot initialization
upon start up.
• If you need to add custom initializations,

this function is a place to do it!

1. line numbers here were updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: BiBoard Documentation Comment
• This multiline comment documents aspects of the BiBoard, including the layout & connectivity.

25

OpenCat.h: Boards, Version, Birthmark, Toggles1

• Sets serial port parameters and defines some board parameters.
• Sets a version date.
• Sets the "BIRTHMARK" character (prevents automatic resetting).
• Enables Bluetooth and Gyro, i.e. the IMU (Inertial Measurement Unit) module.
• Set the servo frequency for PWM control

26

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: Pins1

• Based on the BiBoard version, these defines...
• Set the pin numbers, including those for servo pulse width modulation (PWM) control

• Note the constant array "PWM_pin" holds those pin numbers for the servo PWM control

27

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: rate, DOFs, ServoModel_t enum
• Sets the sample rate used in doubleLight.h and doubleInfraredDistance.h

• MAX_READING and BASE_RANGE
• For analog (inc. PWM) IO with 12-bit (4096 steps) and 10-bit (1024 steps) resolutions, respectively.
• "rate" proves a scaling factor between these two different analog resolutions.

• Sets various maximum degrees of freedom (DOF = maximum possible servos)

• Based on the model (NYBBLE vs BITTLE vs CUB)
• Sets number of walking servos (WALKING_DOF) and the number of servos in a "gait" array (GAIT_ARRAY_DOF)

• Note: GAIT_ARRAY_DOF is not currently used.

• Creates an enumeration for the servo models

28

OpenCat.h: Joints, servoModeList[]
• Conditionally sets joint names for current robot model then includes the appropriate instinct

header file. Note: Bittle does not have NECK TILT or TAIL joints.

• Sets the servoModeList[] array with ServoModel_t enum values specified with the joint
names.

• Sets bool variable "newBoard" to false so the new (uncalibrated) board setup (found in
I2cEEPROM.h) will not run unless the BIRTHMARK has been cleared.

• See code line "newBoard = newBoardQ(EEPROM_BIRTHMARK_ADDRESS);" in i2cEepromSetup()
• i2cEepromSetup() is called in the initRobot() function (see later slides).

29

Model dependent
LEG joint style

(obviously different
 when in calib pose)

The LEG joint is a shoulder/hip
joint since it connects the body

to the upper leg

calib pose:
Nybble vs. Bittle

OpenCat.h: math library, token list1

• Begin the defining of token names and values
• The token values are what you can send, via communication channels, for initiating commands to the robot.
• See https://docs.petoi.com/apis/serial-protocol for more information.

• Token "T_Skill" (value is 'k') requires Skill Names2 found in Instinct<Model>ESP.h header files
• E.g. for Model = Bittle, Skill Names are found in InstinctBittleESP.h

30

2. There must be no space between the 'k' and the Skill Name (e.g. "ksit")1. updated based on repo commit "1a008994" 2024-05-17

https://docs.petoi.com/apis/serial-protocol

OpenCat.h: token list (cont.)1

• Complete the defining of token names and values.

31

These were added to allow runtime control of the
modules with moduleManager.h, via the 'X' token.

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: control & command variables1

• Other important variables are defined and, if appropriate, initialized.

32

newCmdIdx:
This variable is used to set priority between command sources.

In principle, it could be used to set priority between different sensor data
sources.

Define "token" variables.

Define
"command"
variables which
hold the token
parameters.

newCmd:
This variable does double duty.
• It can hold the token parameters as part of a command.
• It can hold skill array information, including the "duty angles" for skill

frames. See the buildSkill() method of the Skill class in a later slide.

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: bool variables1

• bool variables used, variously, by reaction.h, io.h, skill.h, imu.h, moduleManager.h,
infrared.h, motion.h, ultrasonic.h, sound.h, I2cEEPROM.h

33

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: module & delay variables1

• module variables used by moduleManager.h

• delay variables used by reaction.h

34

Used with the accelerate / decelerate tokens

1. updated based on repo commit "1a008994" 2024-05-17

OpenCat.h: servo related arrays
• Robot model dependent values (e.g. rotation directions and limits to servo angles)

are defined here.

• middleShift[] is used to help define the "zero" position of each servo by "shifting" from the
mathematical "middle" of the servo range by an amount specified in this integer array.

35

OpenCat.h: servo related arrays (cont.) & robot orientation variables
36

Nybble

Bittle

Note that joint indexes
#10,11 and #14,15
have opposite sign

due to the different leg
configuration of Nybble vs. Bittle

These arrays are used
 in many places!

These default values match
those found in the "rest" skill

for each model.

OpenCat.h: unconditional & conditional includes1

• Unconditional (always included) header files
• tools.h, QList/QList.h, taskQueue.h
• sound.h, I2cEEPROM.h, espServo.h, motion.h, randomMind.h, io.h
• skill.h, moduleManager.h, reaction.h, qualityAssurance.h

• Conditional (option dependent) header files inclusions
• #ifdef BT_BLE #include "bleUart.h"
• #ifdef GYRO_PIN #include "imu.h"
• #ifdef IR_PIN #include "infrared.h"
• #ifdef NEOPIXEL_PIN #include "led.h"

• In repo commit "fdae2e19", there were conditional inclusions
in OpenCat.h, for the following header files:

• camera.h, voice.h, gesture.h, pir.h, doubleTouch.h, doubleLight.h,
doubleInfraredDistance.h

• However, these have now been moved to moduleManager.h

37

1. updated based on repo commit "1a008994" 2024-05-17

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

38

Next Up!

OpenCat.h: initRobot() function
• Beeps notification.

• Wire.begin initializes I2C bus communication.

• Displays initial message in the serial monitor window.

• Calls functions to initialize the robot.

39

The servoSetup() function
is unconditional so it is
always called.

The macro directives GYRO_PIN, BT_BLE, and
BT_SPP are conditional, but they were defined
above, so the guarded functions are called.

OpenCat.h: initRobot() function (cont.)
• Calls functions to initialize the robot (cont.)

40

The macro directives NEOPIXEL_PIN, PWM_LED_PIN,
VOLTAGE, and IR_PIN are conditional, but they were
defined above, so the guarded functions are called.

Perform quality assurance tests during setup.

In repo commit "1a008994" 2024-05-17,
these conditional directives are now in
moduleManager.h

OpenCat.h: initRobot() function (cont.)1

• Calls functions to initialize the robot (cont.)

41

The "tQueue" TaskQueue object is created here.

New moduleActivatedQfunction()
returns true if the specified module is
enabled.

• If the Gyro is presenting an exception (because the
robot is on its side) then set the skill to calibration.

• Otherwise, set the skill to the rest posture.

Insert other setup() robot commands here. For example:
 tQueue->addTask('k', "up"); //queue "kup" command to start robot in "stand-up" posture

1. updated based on repo commit "1a008994" 2024-05-17

Commented out code not shown.

moduleManager now handles the
modules

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

42

Next Up!

Process
Flow

• The loop() function is the Arduino function that is run continuously after setup() finishes.
• If VOLTAGE is defined (currently only for the BiBoard2), then the "check for" lowBattery() function in reaction.h

is called.
• readEnvironment(), in io.h, is called to...

• read from the IMU [via read_IMU() in imu.h] - more info on a later slide
• read sound [via read_sound() in io.h]
• read GPS [via read_GPS() in io.h]
Of these, only read_IMU() has code.

• dealWithExceptions(), in reaction.h, is called to deal with 4 exception values:
• -1 = robot dropped; -2 = robot flipped over; -3 & -4 = cases when robot is manually pushed or rotated.

However, only the exception -2 is currently used.

• The cleared() function of the tQueue object is called.
• If it returns False (there is at least one task object in the task queue) then a task in the task queue is performed via the

popTask() function of tQueue.
• Else, readSignal(), in moduleManager.h, is called to get a command.

• playLight() in led.h is called if the NEOPIXEL_PIN macro directive is defined
• reaction(), in reaction.h, is called to process the command.

43OpenCatEsp32.ino: loop() function

We will examine
circled items in the next
series of slides

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

44

Next Up!Next Up!

• The bool gyroBalanceQ is true when the Gyro is enabled.

• The read_IMU() function (in imu.h) reads a Gyro packet to update the
float *ypr (yaw, pitch, roll) array.

• The *ypr array is used extensively in the source code to check and respond to the robot orientation.

45io.h: readEnvironment() function

in io.h in imu.h (not shown in process map)

from
Gyro packet

Currently,
does nothing.

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

46

Next Up!Next Up!

• This code has 4 exceptions but only "case -2" does anything - will only show that part.

47reaction.h: dealWithExceptions() function

⚫

⚫

⚫

Exception "case -2" is a fall ("flipped robot") detected by the Gyro.
It triggers the recovery ("rc") skill.

After the recovery attempt, read_IMU()
is called to get fresh Gyro readings...

then tQueue is used to requeue the last task

⚫

⚫

⚫

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

48

Next Up!Next Up!

taskQueue.h: Class Task and the tQueue object
Class Task creates a task object of generic type (using C++ template).
• Initialize taskTimer and taskInterval.
• Initialize tkn (token character), parameters (array), paraLength (length of that array) and

dly (task delay). Note: dly (and parameter d) are apparently not used.
• Class constructor parameters are t, p and d.

• char t (= token character) assigned
to tkn.

• T* p (= pointer to parameter aka newCmd
which can contain ascii or binary
characters).

• int d (= task delay) assigned to dly.

• Class constructor code is
• Sets paraLength based on ‘p’,

depending on the token character (A-Z vs.
other = a-z, digits, special characters).

• Dimension parameters (array).
• Use copy function arrayNCPY()

from tools.h to copy from p to
parameters (array).

• Set last character of parameters
to ‘~" (for capital letter tokens) or
to "\0" for all other tokens.

• Distinguish between binary and ascii commands

49

Create class destructor and info() function

Capital letters are used for binary tokens,
so called because they are meant to
accept binary parameters.

Binary parameters
use the '~' character
as a terminator in
newCmd.

ASCII parameters use
the '\0' character as a
terminator in
newCmd.

taskQueue.h: Class TaskQueue
• Class TaskQueue inherits from QList (a generic linked list class)

• A TaskQueue object is a linked list that holds items of type Task.
• lastTask is initially NULL but later holds the most recent Task completed.
• addTaskToFront() and addTask() puts a Task item at the front and back of the list, respectively.
• createTask() creates and adds example Tasks to the TaskQueue
• The cleared() function, called in the OpenCatEsp32.ino loop() function:

• returns true (no Tasks in the list) when:
TaskQueue size is 0 AND "time since last Task completion" is > current taskInterval

50

taskQueue.h: Class TaskQueue (cont.)
• The popTask() function, called in the OpenCatEsp32.ino loop() function:

• Calls loadTaskInfo() while getting a Task from the front of the TaskQueue.
• loadTaskInfo() places Task information into global variables

(token, cmdLen, taskInterval, newCmd, taskTimer, newCmdIdx).

• The Task is then popped off the front (and thereby removed from the TaskQueue).

51

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

52

Next Up!Next Up!

moduleManager.h: readSignal() function1

• Conditional directives select the source to receive the command
• Then uses one of the several functions, read_infrared(), read_serial(), readBle(), or read_voice(), as appropriate

to get (directly or via interpretation) the command (token plus token parameters) from that source.

• Read from whatever sensors are enabled.

53

1. updated based on repo commit "1a008994" 2024-05-17

newCmdIdx
is set to the values
indicated

Read serial source: USB or Bluetooth Classic SPP (Serial Port Profile)

moduleManager.h: readSignal() function (cont.)1

• Read from whatever sensors are enabled (cont.).

54

1. updated based on repo commit "1a008994" 2024-05-17

moduleManager.h: read_serial() function as an example1 55

• As a command source example, we look at read_serial(), which is used for serial
communication.

Check for Bluetooth serial communication

Check for serial communication to Voice module

Finally, check for USB serial communication

1. updated based on repo commit "1a008994" 2024-05-17

moduleManager.h: read_serial() function as an example (cont.)1 56

• Read token then read any parameters that follow.

Wrapped this line so it fits on the page

1. updated based on repo commit "1a008994" 2024-05-17

Inner "do ... while" loop clear the serial buffer when overflow occurs.

Set the command to something safe when the overflow occurs

Get token
Assign the terminator, based on token (uppercase vs. not-uppercase)

Add next parameter character to newCmd then loop to recheck for overflow

Middle "do ... while" loop checks for overflow (too many characters after token)
before adding next parameter character to newCmd

Outer "do ... while" loop continues until the proper terminator is found (or until timeout occurs).

moduleManager.h: read_serial() function as an example (cont.)1 57

• Check for non-uppercase tokens, excepting 'X', 'R', 'W' tokens, to delete undesired '\r' and '\n'
characters.

• Terminate newCmd with '\0' (string terminator) in such cases.
• Otherwise, use the '~' terminator.

1. updated based on repo commit "1a008994" 2024-05-17

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

58

Next Up!Next Up!

reaction.h: reaction() function1

• Note:
newCmdIdx is set by various functions
e.g. readSignal(), readInfrared(), read_PIR()

• Value of newCmdIdx is checked in reaction()
and readSignal()

• It must be non-zero to allow access to most of the
reaction() functionality

• Value is used in the beep() function
• newCmdIdx = 2 used with VOICE macro
• newCmdIdx = -1 and -2 used in dealWithExceptions
• newCmdIdx = 4 used by powerSaver() function in

randomMind.h
• newCmdIdx = 100 used by randomMind() function

in randomMind.h
• resetCmd() sets newCmdIdx = 0

59

Initializes the gyro and Random Mind

idleTimer used to know time since last command
Used by T_SERVO_MICROSECOND token

If the last token was one of those listed, then turn on the gyro

Initializes servos

First there is some setup work.

Play note with a frequency that is based on the value of newCmdIdx
Wrapped this line so it fits on the page

1. updated based on repo commit "1a008994" 2024-05-17

reaction.h: reaction() function (cont.)1
60Next is this very long switch that

responds to every defined token.

1. updated based on repo commit "1a008994" 2024-05-17

Undocumented
tokens used by setServoP()
in espServo.h to tune servo stiffness

reaction.h: reaction() function (cont.)
• Code for selected tokens.

61

Incrementally
decrease runDelay.

Issue the "rest" command
then do shutdown activities.

Incrementally
increase runDelay.

At this point, the value of newCmd is the skill name,
and it is used to load that skill.

Loads example commands into the task queue
(currently skills "vtF" and "up").

This is a consequence of newCmd having two roles,
as stated previously in the "OpenCat.h" section.

Default part of the switch.
This is what happens if the token is unrecognized!

reaction.h: reaction() function (cont.)
• Code for selected tokens (cont.)

• The T_Skill is the most used token.
• We will look at the loadSkillName() function, found in skills.h, next.

62

"Sketch" Process Map

OpenCatEsp32.ino
(controlling sketch) OpenCat.h io.h reaction.h taskQueue.h moduleManager.h skills.h

#include
"src/OpenCat.h"

• Variable
initialization

• Unconditional &
conditional
#define and
#include
directives

setup()

initRobot()

• Call unconditional
& conditional
functions

• Create tQueue

loop()

readEnvironment() • Read IMU

dealWithExceptions() • Fix flipped robot

tQueue->cleared()
 tQueue->popTask() • Get a task

readSignal() • Get command

reaction() • Process
command • loadBySkillName()

Function Calls and Inclusion Directives

Process
Flow

63

Next Up!Next Up!

skill.h: loadBySkillName() function
64

Index of skill in PROGMEM (flash memory).
Get the last character of the skill name (use to check for mirrorable skills).

Set the offsetLR, based on that last character
(used by mirrored skills like "bkL" and "bkR").

Use the get() function of skillList [a QList of type SkillPreview which holds the list of skills],
with the supplied skillIndex, to return a SkillPreview item.
Use the index property of that SkillPreview item to return the skill index which is used in
progmemPointer[] by buildSkill().
Note: This returned index "should be" the same as skillIndex above so this line could be
written as: skill->buildSkill(skillIndex);

buildSkill() gets the skill from PROGMEM, formats it, and stores it in the skill object.

For mirrorable skills, the default direction is leftward
locomotion, 'L', so mirror if "lr" variable
 is 'R'. Also supports random leftward vs rightward
locomotion, when the last character is 'X'.

skill.h: Skill class
65

• The Skill class is used to create the global skill object.
• As seen on the last slide, the buildSkill() method of this object is used to get skill information from PROGMEM

and format it properly for use.

Skill object properties.

Get skill array and store in newCmd.

Format the skill.

Used by loadBySkillName() function in previous slide.

Used when token is 'K'.

skill.h: Skill class (cont.)
66

• Here are the methods of the Skill class

A rather long method to implement the skill, used in the reaction() function of reaction.h

Used by loadBySkillName() function

Code Walkthrough Ends!

67

	Slide 1: OpenCatEsp32 Code Walkthrough for the Bittle with BiBoard (ESP32 CPU)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Code Walkthrough Begins!
	Slide 19
	Slide 20
	Slide 21: OpenCatEsp32.ino: Model, Board & Software "Defines"1
	Slide 22: OpenCatEsp32.ino: Master include & setup() function
	Slide 23
	Slide 24: OpenCat.h: General Observations
	Slide 25: OpenCat.h: BiBoard Documentation Comment
	Slide 26: OpenCat.h: Boards, Version, Birthmark, Toggles1
	Slide 27: OpenCat.h: Pins1
	Slide 28: OpenCat.h: rate, DOFs, ServoModel_t enum
	Slide 29: OpenCat.h: Joints, servoModeList[]
	Slide 30: OpenCat.h: math library, token list1
	Slide 31: OpenCat.h: token list (cont.)1
	Slide 32: OpenCat.h: control & command variables1
	Slide 33: OpenCat.h: bool variables1
	Slide 34: OpenCat.h: module & delay variables1
	Slide 35: OpenCat.h: servo related arrays
	Slide 36: OpenCat.h: servo related arrays (cont.) & robot orientation variables
	Slide 37: OpenCat.h: unconditional & conditional includes1
	Slide 38
	Slide 39: OpenCat.h: initRobot() function
	Slide 40: OpenCat.h: initRobot() function (cont.)
	Slide 41: OpenCat.h: initRobot() function (cont.)1
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: taskQueue.h: Class Task and the tQueue object
	Slide 50: taskQueue.h: Class TaskQueue
	Slide 51: taskQueue.h: Class TaskQueue (cont.)
	Slide 52
	Slide 53: moduleManager.h: readSignal() function1
	Slide 54: moduleManager.h: readSignal() function (cont.)1
	Slide 55: moduleManager.h: read_serial() function as an example1
	Slide 56: moduleManager.h: read_serial() function as an example (cont.)1
	Slide 57: moduleManager.h: read_serial() function as an example (cont.)1
	Slide 58
	Slide 59: reaction.h: reaction() function1
	Slide 60: reaction.h: reaction() function (cont.)1
	Slide 61: reaction.h: reaction() function (cont.)
	Slide 62: reaction.h: reaction() function (cont.)
	Slide 63
	Slide 64: skill.h: loadBySkillName() function
	Slide 65: skill.h: Skill class
	Slide 66: skill.h: Skill class (cont.)
	Slide 67: Code Walkthrough Ends!

